Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Braz. j. biol ; 83: e242603, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355852

ABSTRACT

Abstract Transcription factors (TF) are a wide class of genes in plants, and these can regulate the expression of other genes in response to various environmental stresses (biotic and abiotic). In the current study, transcription factor activity in sugarcane was examined during cold stress. Initially, RNA transcript reads of two sugarcane cultivars (ROC22 and GT08-1108) under cold stress were downloaded from SRA NCBI database. The reads were aligned into a reference genome and the differential expression analyses were performed with the R/Bioconductor edgeR package. Based on our analyses in the ROC22 cultivar, 963 TF genes were significantly upregulated under cold stress among a total of 5649 upregulated genes, while 293 TF genes were downregulated among a total of 3,289 downregulated genes. In the GT08-1108 cultivar, 974 TF genes were identified among 5,649 upregulated genes and 283 TF genes were found among 3,289 downregulated genes. Most transcription factors were annotated with GO categories related to protein binding, transcription factor binding, DNA-sequence-specific binding, transcription factor complex, transcription factor activity in RNA polymerase II, the activity of nucleic acid binding transcription factor, transcription corepressor activity, sequence-specific regulatory region, the activity of transcription factor of RNA polymerase II, transcription factor cofactor activity, transcription factor activity from plastid promoter, transcription factor activity from RNA polymerase I promoter, polymerase II and RNA polymerase III. The findings of above results will help to identify differentially expressed transcription factors during cold stress. It also provides a comprehensive analysis of the regulation of the transcription activity of many genes. Therefore, this study provides the molecular basis for improving cold tolerance in sugarcane and other economically important grasses.


Resumo Fatores de transcrição (FT) são uma ampla classe de genes em plantas e podem regular a expressão de outros genes em resposta a vários estresses ambientais (estresses bióticos e abióticos). No presente estudo, a atividade do fator de transcrição na cana-de-açúcar foi examinada durante o estresse pelo frio. Inicialmente, as leituras de transcrição de RNA de duas cultivares de cana-de-açúcar (ROC22 e GT08-1108) sob estresse frio foram baixadas do banco de dados SRA NCBI. As leituras foram alinhadas em um genoma de referência e as análises de expressão diferencial foram realizadas com o pacote R / Bioconductor edgeR. Com base em nossas análises no cultivar ROC22, 963 genes TF foram significativamente regulados positivamente sob estresse pelo frio entre um total de 5.649 genes regulados positivamente, enquanto 293 genes TF foram regulados negativamente entre um total de 3.289 genes regulados negativamente. No cultivar GT08-1108, 974 genes TF foram identificados entre 5.649 genes regulados positivamente e 283 genes TF foram encontrados entre 3.289 genes regulados negativamente. Os fatores de transcrição, em sua maioria, foram anotados com categorias GO relacionadas à ligação de proteína, ligação de fator de transcrição, ligação específica de sequência de DNA, complexo de fator de transcrição, atividade de fator de transcrição em RNA polimerase II, atividade de fator de transcrição de ligação de ácido nucleico, atividade de corepressor de transcrição, sequência específica da região reguladora, atividade do fator de transcrição da RNA polimerase II, atividade do cofator do fator de transcrição, atividade do fator de transcrição do promotor do plastídio, atividade do fator de transcrição do promotor da RNA polimerase I, polimerase II e RNA polimerase III. As descobertas dos resultados acima ajudarão a identificar fatores de transcrição expressos diferencialmente durante o estresse pelo frio. Ele também fornece uma análise abrangente da regulação da atividade de transcrição de muitos genes. Portanto, este estudo fornece base molecular para melhorar a tolerância ao frio em cana-de-açúcar e outras gramíneas economicamente importantes.


Subject(s)
Saccharum/genetics , Saccharum/metabolism , Cold-Shock Response/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cold Temperature , Gene Expression Regulation, Plant , Gene Expression Profiling
2.
Chinese Journal of Pathology ; (12): 665-670, 2023.
Article in Chinese | WPRIM | ID: wpr-985755

ABSTRACT

Objective: To investigate and elucidate the clinicopathological and prognostic characteristics of SMARCA4-deficient non-small cell lung cancer. Methods: The clinicopathological and prognostic data were collected in 127 patients with SMARCA4-deficient non-small cell lung cancer diagnosed in Shanghai Pulmonary Hospital, Shanghai, China from January 2020 to March 2022. The variation and expression of biomarkers related to treatment were retrospectively reviewed. Results: One hundred and twenty-seven patients were eligible for enrollment. Among them 120 patients (94.5%) were male and 7 cases (5.5%) were female, while the average age was 63 years (range 42-80 years). There were 41 cases (32.3%) of stage Ⅰ cancer, 23 cases (18.1%) of stage Ⅱ, 31 cases (24.4%) of stage Ⅲ and 32 cases (25.2%) of stage Ⅳ. SMARCA4 expression detected by immunohistochemistry was completely absent in 117 cases (92.1%) and partially absent in 10 cases (7.9%). PD-L1 immunohistochemical analyses were performed on 107 cases. PD-L1 was negative, weakly positive and strongly positive in 49.5% (53/107), 26.2% (28/107) and 24.3% (26/107) of the cases, respectively. Twenty-one cases showed gene alterations (21/104, 20.2%). The KRAS gene alternation (n=10) was most common. Mutant-type SMARCA4-deficient non-small cell lung cancer was more commonly detected in females, and was associated with positive lymph nodes and advanced clinical stage (P<0.01). Univariate survival analysis showed that advanced clinical stage was a poor prognosis factor, and vascular invasion was a poor predictor of progression-free survival in patients with surgical resection. Conclusions: SMARCA4-deficient non-small cell lung cancer is a rare tumor with poor prognosis, and often occurs in elderly male patients. However, SMARCA4-deficient non-small cell lung cancers with gene mutations are often seen in female patients. Vascular invasion is a prognostic factor for disease progression or recurrence in patients with resectable tumor. Early detection and access to treatment are important for improving patient survivals.


Subject(s)
Humans , Male , Female , Aged , Adult , Middle Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen/metabolism , Lung Neoplasms/pathology , Retrospective Studies , China , Prognosis , Biomarkers, Tumor/analysis , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
3.
Chinese Journal of Biotechnology ; (12): 2897-2913, 2023.
Article in Chinese | WPRIM | ID: wpr-981239

ABSTRACT

MADS-box gene family is a significant transcription factor family that plays a crucial role in regulating plant growth, development, signal transduction, and other processes. In order to study the characteristics of MADS-box gene family in Docynia delavayi (Franch.) Schneid. and its expression during different stages of seed germination, this study used seedlings at different stages of germination as materials and screened MADS-box transcription factors from the transcriptome database of D. delavayi using bioinformatics methods based on transcriptome sequencing. The physical and chemical properties, protein conservative motifs, phylogenetic evolution, and expression patterns of the MADS-box transcription factors were analyzed. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of MADS-box gene family members during different stages of seed germination in D. delavayi. The results showed that 81 genes of MADS-box gene family were identified from the transcriptome data of D. delavayi, with the molecular weight distribution ranged of 6 211.34-173 512.77 Da and the theoretical isoelectric point ranged from 5.21 to 10.97. Phylogenetic analysis showed that the 81 genes could be divided into 15 subgroups, among which DdMADS27, DdMADS42, DdMADS45, DdMADS46, DdMADS53, DdMADS61, DdMADS76, DdMADS77 and DdMADS79 might be involved in the regulation of ovule development in D. delavayi. The combination of the transcriptome data and the qRT-PCR analysis results of D. delavayi seeds indicated that DdMADS25 and DdMADS42 might be involved in the regulation of seed development, and that DdMADS37 and DdMADS38 might have negative regulation effects on seed dormancy. Previous studies have reported that the MIKC* subgroup is mainly involved in regulating flower organ development. For the first time, we found that the transcription factors of the MIKC* subgroup exhibited a high expression level at the early stage of seed germination, so we speculated that the MIKC* subgroup played a regulatory role in the process of seed germination. To verify the accuracy of this speculation, we selected DdMADS60 and DdMADS75 from the MIKC* subgroup for qRT-PCR experiments, and the experimental results were consistent with the expression trend of transcriptome sequencing. This study provides a reference for further research on the biological function of D. delavayi MADS-box gene family from the perspective of molecular evolution.


Subject(s)
MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Genes, Plant , Transcription Factors/genetics , Plant Proteins/metabolism , Gene Expression Profiling
4.
Frontiers of Medicine ; (4): 503-517, 2023.
Article in English | WPRIM | ID: wpr-982571

ABSTRACT

Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.


Subject(s)
Humans , Carcinoma, Renal Cell/genetics , Fructose-Bisphosphate Aldolase/metabolism , Co-Repressor Proteins/metabolism , Transcription Factors/genetics , Kidney Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
5.
Journal of Experimental Hematology ; (6): 333-337, 2023.
Article in Chinese | WPRIM | ID: wpr-982063

ABSTRACT

OBJECTIVE@#To investigate the correlation between single-nucleotide polymorphism (SNP) of ARID5B gene and resistance to methotrexate (MTX) in children with acute lymphoblastic leukemia (ALL).@*METHODS@#A total of 144 children with ALL who were treated in General Hospital of Ningxia Medical University from January 2015 to November 2021 were enrolled and divided into MTX resistant group and non-MTX resistant group, with 72 cases in each group. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) technology was used to measure the SNP of ARID5B gene in all children and analyze its correlation with MTX resistant.@*RESULTS@#There were no significant differences in the genotype and gene frequency of rs7923074, rs10821936, rs6479778, and rs2893881 between MTX resistant group and non-MTX resistant group (P>0.05). The frequency of C/C genotype in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T/T genotype was opposite (P<0.05). The frequency of C allele in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T allele was opposite (P<0.05). Multivariate logistic regression analysis showed that ARID5B gene rs4948488 TT genotype and T allele frequency were risk factors for MTX resistant in ALL children (P<0.05).@*CONCLUSION@#The SNP of ARID5B gene is associated with MTX resistant in ALL children.


Subject(s)
Child , Humans , DNA-Binding Proteins/genetics , Gene Frequency , Genotype , Methotrexate , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics , Drug Resistance, Neoplasm
6.
Chinese Journal of Contemporary Pediatrics ; (12): 388-393, 2023.
Article in Chinese | WPRIM | ID: wpr-981968

ABSTRACT

OBJECTIVES@#To study the association of ventricular septal defect (VSD) with rare variations in the promoter region of HAND2 gene, as well as related molecular mechanisms.@*METHODS@#Blood samples were collected from 349 children with VSD and 345 healthy controls. The target fragments were amplified by polymerase chain reaction and sequenced to identify the rare variation sites in the promoter region of the HAND2 gene. Dual-luciferase reporter assay was used to perform a functional analysis of the variation sites. Electrophoretic mobility shift assay (EMSA) was used to investigate related molecular mechanisms. TRANSFAC and JASPAR databases were used to predict transcription factors.@*RESULTS@#Sequencing revealed that three variation sites (g.173530852A>G, g.173531173A>G, and g.173531213C>G) were only observed in the promoter region of the HAND2 gene in 10 children with VSD, among whom 4 children had only one variation site. The dual-luciferase reporter assay revealed that g.173531213C>G reduced the transcriptional activity of the HAND2 gene promoter. EMSA and transcription factor prediction revealed that g.173531213C>G created a binding site for transcription factor.@*CONCLUSIONS@#The rare variation, g.173531213C>G, in the promoter region of the HAND2 gene participates in the development and progression of VSD possibly by affecting the binding of transcription factors.


Subject(s)
Child , Humans , Base Sequence , Heart Septal Defects, Ventricular/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic , Transcription Factors/genetics
7.
Chinese Journal of Medical Genetics ; (6): 563-567, 2023.
Article in Chinese | WPRIM | ID: wpr-981789

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a fetus with Cardiac-urogenital syndrome (CUGS).@*METHODS@#A fetus with congenital heart disease identified at the Maternal Fetal Medical Center for Fetal Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University in January 2019 was selected as the study subject. Clinical data of the fetus was collected. Copy number variation sequencing (CNV-seq) and trio-whole exome sequencing (trio-WES) were carried out for the fetus and its parents. Candidate variants were verified by Sanger sequencing.@*RESULTS@#Detailed fetal echocardiographic examination had revealed hypoplastic aortic arch. The results of trio-WES revealed that the fetus has harbored a de novo splice variant of the MYRF gene (c.1792-2A>C), for which both parents were of the wild-type. Sanger sequencing confirmed the variant to be de novo. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic. CNV-seq has identified no chromosomal anomalies. And the fetus was diagnosed with Cardiac-urogenital syndrome.@*CONCLUSION@#The de novo splice variant of the MYRF gene probably underlay the abnormal phenotype in the fetus. Above finding has enriched the spectrum of MYRF gene variants.


Subject(s)
Female , Humans , DNA Copy Number Variations , Fetal Diseases , Fetus/abnormalities , Heart Defects, Congenital/genetics , Mutation , Transcription Factors/genetics
8.
Chinese Journal of Medical Genetics ; (6): 42-46, 2023.
Article in Chinese | WPRIM | ID: wpr-970875

ABSTRACT

OBJECTIVE@#To explore the genetic basis for two patients from a family with BCL11A-related intellectual disability (BCL11A-ID).@*METHODS@#Clinical data of the proband and her family members was analyzed. Chromosomal karyotyping analysis, trio-whole exome sequencing (trio-WES) and copy number variation sequencing (CNV-seq) were carried out. For the suspected genetic variants, Sanger sequencing was used to verify, and pathogenicity assessment was conducted.@*RESULTS@#The proband and her mother both had intellectual and language impairment, and their fetal hemoglobin (HbF) was significantly elevated. A heterozygous c.1327_c.1328delTC (p.Ser443Hisfs*128) variant was found in exon 4 of the BCL11A gene by WES, which has resulted in truncated expression of the encoded protein, and Sanger sequencing has verified that the variant was inherited from the mother. The variant was not found in related databases. The variant was predicted as pathogenic according to the guidelines from the American College of Medical Genetics and Genomics (ACMG) (PVS1+PM2+PP1). No karyotypic abnormality was found in the proband, her parents and brother, and no pathogenic CNVs was found in the proband and her parents.@*CONCLUSION@#The c.1327_c.1328delTC (p.Ser443Hisfs*128) variant may underlay the BCL11A-ID in the proband and her mother. This de novo variant has expanded the mutational spectrum of the BCL11A gene.


Subject(s)
Humans , Male , Female , Intellectual Disability/genetics , DNA Copy Number Variations , Pedigree , Mutation , Transcription Factors/genetics , Mothers , Repressor Proteins/genetics
9.
Chinese Journal of Biotechnology ; (12): 566-585, 2023.
Article in Chinese | WPRIM | ID: wpr-970392

ABSTRACT

WUSCHEL-related homebox (WOX) gene family is a type of plant specific transcription factor, and belongs to the homeobox (HB) transcription factor superfamily. WOX genes play an important role in plant development, such as stem cell regulation and reproductive progress, and have been identified in many plant species. However, the information of mungbean VrWOX genes is limited. In this study, we identified 42 VrWOX genes in mungbean genome using Arabidopsis AtWOX genes as BLAST queries. VrWOX genes are unevenly distributed on 11 mungbean chromosomes, and chromosome 7 contains the most VrWOX genes. VrWOX genes are classified into three subgroups, the ancient group, the intermediate group and the modern/WUSCHEL group, which contains 19, 12 and 11 VrWOX members, respectively. Intraspecific synteny analysis revealed 12 VrWOX duplicated gene pairs in mungbean. Mungbean and Arabidopsis thaliana have 15 orthologous genes, and mungbean and Phaseolus vulgaris have 22 orthologous genes, respectively. The gene structure and conserved motif are different among VrWOX genes, indicating their functional diversity. The promoter regions of VrWOX genes contain different number and type of cis-acting elements, and VrWOX genes show distinct expression levels in eight mungbean tissues. Our study investigated the bioinformation and expression profiles of VrWOX genes, and provided essential information for further functional characterization of VrWOX genes.


Subject(s)
Vigna/genetics , Fabaceae/genetics , Transcription Factors/genetics , Plants
10.
Chinese Journal of Biotechnology ; (12): 359-371, 2023.
Article in Chinese | WPRIM | ID: wpr-970380

ABSTRACT

This study aims to develop an improved cell screening system for farnesoid X receptor (FXR) agonists based on a dual luciferase reporter gene system. FXR response element (FXRE) fragments from FXR target genes were cloned and inserted into upstream of firefly luciferase (Luc) gene in the plasmid pGL4-luc2P-Hygro. In combination with the internal reference plasmid containing renilla luciferase, a dual luciferase reporter gene system was developed and used for high throughput screening of FXR agonists. After studying the effects of over-expression of RXR, mouse or human FXR, various FXRE fragments, and different ratio of FXR plasmid amount to reporter gene plasmid, induction efficiency of the screening system was optimized by the known FXR agonist GW4064, and Z factor for the system reached 0.83 under optimized conditions. In summary, an improved cell screening system based on double luciferase reporter gene detection system was developed to facilitate the discovery of FXR agonists, where a new enhanced FXRE element was formed by a superposition of multiple FXRE fragments from FXR target genes, instead of a superposition of traditional IR-1 (inverted repeats-1) fragments.


Subject(s)
Humans , Mice , Animals , Transcription Factors/genetics , DNA-Binding Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Genes, Reporter , Luciferases/genetics
11.
Biol. Res ; 56: 9-9, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1429910

ABSTRACT

BACKGROUND: Knowledge about regulating transcription factors (TFs) for osteoblastogenesis from mesenchymal stem cells (MSCs) is limited. Therefore, we investigated the relationship between genomic regions subject to DNA-methylation changes during osteoblastogenesis and the TFs known to directly interact with these regulatory regions. RESULTS: The genome-wide DNA-methylation signature of MSCs differentiated to osteoblasts and adipocytes was determined using the Illumina HumanMethylation450 BeadChip array. During adipogenesis no CpGs passed our test for significant methylation changes. Oppositely, during osteoblastogenesis we identified 2462 differently significantly methylated CpGs (adj. p < 0.05). These resided outside of CpGs islands and were significantly enriched in enhancer regions. We confirmed the correlation between DNA-methylation and gene expression. Accordingly, we developed a bioinformatic tool to analyse differentially methylated regions and the TFs interacting with them. By overlaying our osteoblastogenesis differentially methylated regions with ENCODE TF ChIP-seq data we obtained a set of candidate TFs associated to DNA-methylation changes. Among them, ZEB1 TF was highly related with DNA-methylation. Using RNA interference, we confirmed that ZEB1, and ZEB2, played a key role in adipogenesis and osteoblastogenesis processes. For clinical relevance, ZEB1 mRNA expression in human bone samples was evaluated. This expression positively correlated with weight, body mass index, and PPARγ expression. CONCLUSIONS: In this work we describe an osteoblastogenesis-associated DNA-methylation profile and, using these data, validate a novel computational tool to identify key TFs associated to age-related disease processes. By means of this tool we identified and confirmed ZEB TFs as mediators involved in the MSCs differentiation to osteoblasts and adipocytes, and obesity-related bone adiposity.


Subject(s)
Humans , Osteogenesis/genetics , Mesenchymal Stem Cells , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation/genetics , DNA Methylation
12.
Acta Physiologica Sinica ; (6): 269-278, 2023.
Article in Chinese | WPRIM | ID: wpr-981004

ABSTRACT

DMRT, a gene family related to sexual determination, encodes a large group of transcription factors (DMRTs) with the double-sex and mab-3 (DM) domain (except for DMRT8), which is able to bind to and regulate DNAs. Current studies have shown that the DMRT gene family plays a critical role in the development of sexual organs (such as gender differentiation, gonadal development, germ cell development, etc.) as well as extrasexual organs (such as musculocartilage development, nervous system development, etc.). Additionally, it has been suggested that DMRTs may be involved in the cancer development and progression (such as prostate cancer, breast cancer, lung cancer, etc.). This review summarizes the research progress about the mammalian DMRTs' structure, function and its critical role in cancer development, progression and therapy (mainly in human and mice), which suggests that DMRT gene could be a candidate gene in the study of tumor formation and therapeutic strategy.


Subject(s)
Male , Animals , Humans , Mice , Transcription Factors/genetics , Mammals/metabolism , Cell Differentiation , Neoplasms/genetics
13.
Chinese Journal of Biotechnology ; (12): 4719-4730, 2022.
Article in Chinese | WPRIM | ID: wpr-970343

ABSTRACT

Vibrio parahaemolyticus, the main pathogen causing seafood related food poisoning worldwide, has strong biofilm formation ability. ToxR is a membrane binding regulatory protein, which has regulatory effect on biofilm formation of V. parahaemolyticus, but the specific mechanism has not been reported. c-di-GMP is an important second messenger in bacteria and is involved in regulating a variety of bacterial behaviors including biofilm formation. In this study, we investigated the regulation of ToxR on c-di-GMP metabolism in V. parahaemolyticus. Intracellular c-di-GMP in the wild type (WT) and toxR mutant (ΔtoxR) strains were extracted by ultrasonication, and the concentrations of c-di-GMP were then determined by enzyme linked immunosorbent assay (ELISA). Three c-di-GMP metabolism-related genes scrA, scrG and vpa0198 were selected as the target genes. Quantitative real-time PCR (q-PCR) was employed to calculate the transcriptional variation of each target gene between WT and ΔtoxR strains. The regulatory DNA region of each target gene was cloned into the pHR309 plasmid harboring a promoterless lacZ gene. The recombinant plasmid was subsequently transferred into WT and ΔtoxR strains to detect the β-galactosidase activity in the cellular extracts. The recombinant lacZ plasmid containing each of the target gene was also transferred into E. coli 100λpir strain harboring the pBAD33 plasmid or the recombinant pBAD33-toxR to test whether ToxR could regulate the expression of the target gene in a heterologous host. The regulatory DNA region of each target gene was amplified by PCR, and the over-expressed His-ToxR was purified. The electrophoretic mobility shift assay (EMSA) was applied to verify whether His-ToxR directly bound to the target promoter region. ELISA results showed that the intracellular c-di-GMP level significantly enhanced in ΔtoxR strain relative to that in WT strain, suggesting that ToxR inhibited the production of c-di-GMP in V. parahaemolyticus. qPCR results showed that the mRNA levels of scrA, scrG and vpa0198 significantly increased in ΔtoxR strain relative to those in WT strain, suggesting that ToxR repressed the transcription of scrA, scrG and vpa0198. lacZ fusion assay showed that ToxR was able to repress the promoter activities of scrA, scrG and vpa0198 in both V. parahaemolyticus and E. coli 100λpir. EMSA results showed that His-ToxR was able to bind to the regulatory DNA regions of scrA and scrG, but not to the regulatory DNA region of vpa0198. In conclusion, ToxR inhibited the production of c-di-GMP in V. parahaemolyticus via directly regulating the transcription of enzyme genes associated with c-di-GMP metabolism, which would be beneficial for V. parahaemolyticus to precisely control bacterial behaviors including biofilm formation.


Subject(s)
Vibrio parahaemolyticus/metabolism , Escherichia coli/metabolism , Bacterial Proteins/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Bacterial
15.
Chinese Journal of Hematology ; (12): 323-329, 2022.
Article in Chinese | WPRIM | ID: wpr-935089

ABSTRACT

Objective: To assess the effect of gene mutations on the efficacy of ruxolitinib for treating myelofibrosis (MF) . Methods: We retrospectively analyzed the clinical data of 56 patients with MF treated with ruxolitinib from July 2017 to December 2020 and applied second-generation sequencing (NGS) technology to detect 127 hematologic tumor-related gene mutations. Additionally, we analyzed the relationship between mutated genes and the efficacy of ruxolitinib. Results: ①Among the 56 patients, there were 36 cases of primary bone marrow fibrosis (PMF) , 9 cases of bone marrow fibrosis (ppv-mf) after polycythemia vera, and 11 cases of bone marrow fibrosis (PET-MF) after primary thrombocytosis (ET) . ②Fifty-six patients with MF taking ruxolitinib underwent NGS, among whom, 50 (89.29%) carried driver mutations, 22 (39.29%) carried ≥3 mutations, and 29 (51.79%) carried high-risk mutations (HMR) . ③ For patients with MF carrying ≥ 3 mutations, ruxolitinib still had a better effect of improving somatic symptoms and shrinking the spleen (P=0.001, P<0.001) , but TTF and PFS were significantly shorter in patients carrying ≥ 3 mutations (P=0.007, P=0.042) . ④For patients carrying ≥ 2 HMR mutations, ruxolitinib was less effective in shrinking the spleen than in those who did not carry HMR (t= 10.471, P=0.034) , and the TTF and PFS were significantly shorter in patients carrying ≥2 HMR mutations (P<0.001, P=0.001) . ⑤Ruxolitinib had poorer effects on spleen reduction, symptom improvement, and stabilization of myelofibrosis in patients carrying additional mutations in ASXL1, EZH2, and SRSF2. Moreover, patients carrying ASXL1 and EZH2 mutations had significantly shorter TTF [ASXL1: 360 (55-1270) d vs 440 (55-1268) d, z=-3.115, P=0.002; EZH2: 327 (55-975) d vs 404 (50-1270) d, z=-3.219, P=0.001], and significantly shorter PFS compared to non-carriers [ASXL1: 457 (50-1331) d vs 574 (55-1437) d, z=-3.219, P=0.001) ; 428 (55-1331) d vs 505 (55-1437) d, z=-2.576, P=0.008]. Conclusion: The type and number of mutations carried by patients with myelofibrosis and HMR impact the efficacy of ruxolitinib.


Subject(s)
Humans , Mutation , Nitriles , Primary Myelofibrosis/genetics , Pyrazoles , Pyrimidines , Retrospective Studies , Technology , Transcription Factors/genetics
16.
Chinese Journal of Schistosomiasis Control ; (6): 277-285, 2022.
Article in Chinese | WPRIM | ID: wpr-940948

ABSTRACT

OBJECTIVE@#To investigate the serum microRNA (miRNA) expression and examine the impact of miRNA expression profiles on T helper type 17 (Th17)/regulatory T cells (Treg) imbalance among patients with cystic echinococcosis, so as to provide insights into the illustration of the mechanisms underlying chronic Echinococcus granulosus infections, and long-term pathogenesis.@*METHODS@#Total RNA was extracted from the sera of cystic echinococcosis patients and healthy controls, and subjected to high-throughput sequencing with the Illumina sequencing platform. Known miRNAs were annotated and new miRNAs were predicted using the miRBase database and the miRDeep2 tool, and differentially expressed miRNAs were identified. The target genes of differentially expressed miRNAs were predicted using the software miRanda and TargetScan, and the intersection was selected for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Among the differentially expressed miRNAs with the 20 highest fold changes, miRNAs that targeted genes relating to key transcription factors RORC and FOXP3 that determine the production of Th17 and Treg cells or their important regulatory pathways (PI3K-Akt and mTOR pathways) were matched.@*RESULTS@#A total of 53 differentially expressed miRNAs were screened in sera of cystic echinococcosis patients and healthy controls, including 47 up-regulated miRNAs and 6 down-regulated miRNAs. GO enrichment analysis showed that these differentially expressed miRNA were involved DNA transcription and translation, cell components, cell morphology, neurodevelopment and metabolic decomposition, and KEGG pathway analysis showed that the differentially expressed miRNA were mainly involved in MAPK, PI3K-Akt and mTOR signaling pathways. Among the differentially expressed miRNAs with the 20 highest fold changes, there were 3 miRNAs that had a potential for target regulation of RORC, and 15 miRNAs that had a potential to target the PI3K-Akt and mTOR signaling pathways.@*CONCLUSIONS@#Significant changes are found in serum miRNA expression profiles among patients with E. granulosus infections, and differentially expressed miRNAs may lead to Th17/Treg imbalance through targeting the key transcription factors of Th17/Treg or PI3K-Akt and mTOR pathways, which facilitates the long-term parasitism of E. granulosus in hosts and causes a chronic disease.


Subject(s)
Humans , Echinococcosis/genetics , Gene Expression Profiling , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases/genetics , Th17 Cells , Transcription Factors/genetics
17.
Journal of Central South University(Medical Sciences) ; (12): 685-697, 2022.
Article in English | WPRIM | ID: wpr-939801

ABSTRACT

OBJECTIVES@#Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignant tumor with unique geographical and ethnic distribution characteristics. NPC is mostly found in south China and Southeast Asia, and its treatment mainly depends on radiotherapy and chemotherapy. However, NPC is usually found in the late stage, and local recurrence and distant metastasis are common, leading to poor prognosis. The receptor tyrosine kinase AXL is up-regulated in various tumors and it is involved in tumor proliferation, migration, invasion, and other processes, which are associated with poor prognosis of tumors. This study aims to detect the expression of AXL in NPC cell lines and tissues, and to investigate its biological function of AXL and the underlying molecular mechanisms in regulation of NPC.@*METHODS@#The expression levels of AXL in normal nasopharyngeal epithelial tissues and NPC tissues were analyzed by GSE68799, GSE12452, and GSE53819 data sets based on Gene Expression Omnibus (GEO) database. The Cancer Genome Atlas (TCGA) database was used to analyze the relationship between AXL and prognosis of head and neck squamous cell carcinoma (HNSC). The indicators of prognosis included overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS), and progression-free interval (PFI). Western blotting assay was used to detect the AXL protein expression levels in normal nasopharyngeal epithelial cell line and NPC cell lines. Immunohistochemical method was used to detect AXL expression levels in normal nasopharyngeal epithelial tissues and NPC tissues. Cell lines with stable AXL knockdown were established by infecting 5-8F and Fadu cells with lentivirus interference vector, and cell lines with stable AXL overexpression were established by infecting C666-1 and HK-1 cells with lentivirus expression vector. Real-time PCR and Western blotting were used to detect the efficiency of knockdown and overexpression in stable cell lines. The effects of AXL knockdown or overexpression on proliferation, migration, and invasion of NPC cells were detected by CCK-8, plate colony formation, and Transwell assays, and the effect of AXL knockdown on tumor growth in nude mice was detected by subcutaneous tumor formation assay. The sequence of AXL upstream 2.0 kb promoter region was obtained by UCSC online database. The PROMO online database was used to predict AXL transcription factors with 0% fault tolerance, and the JASPAR online database was used to predict the binding sites of ETS1 to AXL. Real-time PCR and Western blotting were used to detect the effect of ETS1 on AXL protein and mRNA expression. The AXL upstream 2.0 kb promoter region was divided into 8 fragments, each of which was 250 bp in length. Primers were designed for 8 fragments. The binding of ETS1 to AXL promoter region was detected by chromatin immuno-precipitation (ChIP) assay to determine the direct regulatory relationship between ETS1 and AXL. Rescue assay was used to determine whether ETS1 affected the proliferation, migration, and invasion of NPC cells through AXL.@*RESULTS@#Bioinformatics analysis showed that AXL was highly expressed in NPC tissues (P<0.05), and AXL expression was positively correlated with OS, DFI, DSS, and PFI in HNSC patients. Western blotting and immunohistochemical results showed that AXL was highly expressed in NPC cell lines and tissues compared with the normal nasopharyngeal epithelial cell line and tissues. Real-time PCR and Western blotting results showed that knockdown and overexpression efficiency in the stable cell lines met the requirements of subsequent experiments. The results of CCK-8, plate colony formation, Transwell assays and subcutaneous tumor formation in nude mice showed that down-regulation of AXL significantly inhibited the proliferation, migration, invasion of NPC cells and tumor growth (all P<0.05), and the up-regulation of AXL significantly promoted the proliferation, migration, and invasion of NPC cells (all P<0.05).As predicted by PROMO and JASPAR online databases, ETS1 was a transcription factor of AXL and had multiple binding sites in the AXL promoter region. Real-time PCR and Western blotting results showed that knockdown or overexpression of ETS1 down-regulated or up-regulated AXL protein and mRNA expression levels. ChIP assay result showed that ETS1 bound to AXL promoter region and directly regulate AXL expression. Rescue assay showed that AXL rescued the effects of ETS1 on proliferation, migration and invasion of NPC cells (P<0.05).@*CONCLUSIONS@#AXL is highly expressed in NPC cell lines and tissues, which can promote the malignant progression of NPC, and its expression is regulated by transcription factor ETS1.


Subject(s)
Animals , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/metabolism , RNA, Messenger/genetics , Sincalide/metabolism , Transcription Factors/genetics
18.
Journal of Central South University(Medical Sciences) ; (12): 101-108, 2022.
Article in English | WPRIM | ID: wpr-929011

ABSTRACT

YWHAE gene is located on chromosome 17p13.3, and its product 14-3-3epsilon protein belongs to 14-3-3 protein family. As a molecular scaffold, YWHAE participates in biological processes such as cell adhesion, cell cycle regulation, signal transduction and malignant transformation, and is closely related to many diseases. Overexpression of YWHAE in breast cancer can increase the ability of proliferation, migration and invasion of breast cancer cells. In gastric cancer, YWHAE acts as a negative regulator of MYC and CDC25B, which reduces their expression and inhibits the proliferation, migration, and invasion of gastric cancer cells, and enhances YWHAE-mediated transactivation of NF-κB through CagA. In colorectal cancer, YWHAE lncRNA, as a sponge molecule of miR-323a-3p and miR-532-5p, can compete for endogenous RNA through direct interaction with miR-323a-3p and miR-532-5p, thus up-regulating K-RAS/ERK/1/2 and PI3K-AKT signaling pathways and promoting the cell cycle progression of the colorectal cancer. YWHAE not only mediates tumorigenesis as a competitive endogenous RNA, but also affects gene expression through chromosome variation. For example, the FAM22B-YWHAE fusion gene caused by t(10; 17) (q22; p13) may be associated with the development of endometrial stromal sarcoma. At the same time, the fusion transcript of YWHAE and NUTM2B/E may also lead to the occurrence of endometrial stromal sarcoma. To understand the relationship between YWHAE, NUTM2A, and NUTM2B gene rearrangement/fusion and malignant tumor, YWHAE-FAM22 fusion gene/translocation and tumor, YWHAE gene polymorphism and mental illness, as well as the relationship between 17p13.3 region change and disease occurrence. It provides new idea and basis for understanding the effect of YWHAE gene molecular mechanism and genetic variation on the disease progression, and for the targeted for the diseases.


Subject(s)
Female , Humans , 14-3-3 Proteins/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/genetics , Endometrial Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/metabolism , Sarcoma, Endometrial Stromal/pathology , Stomach Neoplasms/genetics , Transcription Factors/genetics , Translocation, Genetic
19.
Environmental Health and Preventive Medicine ; : 3-3, 2022.
Article in English | WPRIM | ID: wpr-928827

ABSTRACT

BACKGROUND@#SMARCA2 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 2) is an important ATPase catalytic subunit in the switch-sucrose nonfermenting (SWI/SNF) complex. However, its relationship with the pathological features of NSCLC and its prognosis remain unclear.@*METHODS@#We retrospectively reviewed 2390 patients with surgically resected NSCLC, constructed tissue microarrays (TMAs) and performed immunohistochemical assays. We analyzed the correlation of SAMRCA2 with clinicopathological features and evaluated its prognostic value.@*RESULTS@#Among 2390 NSCLC cases, the negative expression ratios of SAMRCA2, SMARCA4, ARID1A, ARID1B and INI1 were 9.3%, 1.8%, 1.2%, 0.4% and 0%, respectively. In NSCLC, male sex, T3 and T4 stage, moderate and poor differentiation, tumor ≥ 2 cm, Ki67 ≥ 15%, SOX-2 negative expression, middle lobe lesion and adenocarcinoma were relative risk factors affecting SMARCA2-negative expression. In lung adenocarcinomas, high-grade nuclei, histological morphology of acinar and papillary, solid and micropapillary and TTF-1-negative expression were relative risk factors affecting SMARCA2-negative expression. Kaplan-Meier survival analysis showed that the OS was shorter in the SMARCA2-negative group. Multivariate survival analysis revealed that SMARCA2-negative expression was an independent factor correlated with a poor prognosis in NSCLC.@*CONCLUSION@#In conclusion, SMARCA2-negative expression is an independent predictor of a poor outcome of NSCLC and is a potential target for NSCLC treatment.


Subject(s)
Humans , Male , Adenosine Triphosphatases/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Retrospective Studies , Transcription Factors/genetics
20.
Chinese Journal of Medical Genetics ; (6): 401-404, 2022.
Article in Chinese | WPRIM | ID: wpr-928428

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a child presented with renal failure and multi-cystic dysplastic kidney without anal atresia.@*METHODS@#Peripheral blood sample of the child and his parents were collected and subjected to whole exome sequencing. Candidate variant was verified by Sanger sequencing.@*RESULTS@#The 40-day-old infant had presented with vomiting brown matter in a 7 days neonate and was transferred for kidney failure. Clinical examination has discovered renal failure, polycystic renal dysplasia, congenital hypothyroidism, bilateral thumb polydactyly, sensorineural hearing loss and preauricular dermatophyte. Genetic testing revealed that he has harbored a previously unreported c.824delT, p.L275Yfs*10 frameshift variant of SALL1 gene, which was confirmed by Sanger sequencing as de novo.@*CONCLUSION@#The patient was diagnosed with Townes-Brocks syndrome due to the novel de novo variant of SALL1 gene. Townes-Brocks syndrome without anal atresia is rare. Above finding has also enriched the mutational spectrum of the SALL1 gene.


Subject(s)
Child , Female , Humans , Infant , Infant, Newborn , Male , Abnormalities, Multiple , Anus, Imperforate/genetics , Hearing Loss, Sensorineural/genetics , Renal Insufficiency , Thumb/abnormalities , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL